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Abstract—In recent years, the transportation industry has been 

under pressure to address issues such as climate change, local 

pollution, and noise pollution. When compared with other modes of 

mass transportation the most recent fuel cell based hybrid electric 

transportation vehicles are more environmentally friendly since they 

produce no tailpipe emissions making them more energy efficient 

than vehicles that are powered by electric, petrol, or diesel engines. 

When accelerating and braking in fuel cell (FCell) based vehicles 

require very quick and dynamic responses from the vehicle.  As a 

result, hybrid electric vehicles should be implemented using fuel cell 

stacks and batteries to provide a balanced dynamic response. In this 

work, energy management (EM) solutions for FCell hybrid electric 

vehicle that are capable of self-learning are discussed. An energy 

management strategy (EMS) that is based on Reinforcement Learning 

(RL) is being researched for use with the FCell based vehicles in 

order to ascertain how power is distributed between the two energy 

sources. The purpose of this work is to provide a review for future 

FCell transportation technology by discussing various reinforcement 

learning methods and highlighting their main outcomes. Additionally, 

the work will highlight the potential benefits that FCell technology 

may have for the transportation industry in terms of reduced 

operational costs as well as improved performance. The work will be 

based on the compilation of information from a wide range of 

acknowledged sources. In particular, RL approaches known as Q-

Learning is utilized in order to maximize battery longevity while 

simultaneously reducing the amount of fuel that is used. During the 

procedure a variety of goal functions are modified as necessary so 

that they are acceptable for Q-learning. Additionally, the difficulties 

observed in the continuing RL based EMS study are described along 

with possible solutions that allow possibility for additional research. 

Keywords: State of Charge, Fuel cell, Reinforcement learning, 

Transfer learning, Energy management strategy.  

1. INTRODUCTION  

The increasing concern about the impact of exhaust emissions 

on climate change and health has led to a re-evaluation of 

transportation options. As a result, there is a growing demand 

for energy efficient and environmentally friendly 

transportation, which has given rise to innovative solutions 

such as fuel cell hybrid electric vehicles. Japan, Germany, 

China and the United States have already implemented fuel 

cell technology to power vehicles-trains and India is also 

exploring this technology through several pilot projects due to 

the significant contribution of the country's transportation 

emissions by the vehicles-trains. Fuel cell technology has been 

a reliable source of electricity generation for several decades 

and converting hydrogen and oxygen into electricity and water 

with only heat and water being emitted as byproducts[1]. 

FCell based vehicles use a fuel cell system and battery system 

for power [2]. The fuel cell system powers the electric motors 

by converting hydrogen and oxygen into electricity and water. 

The battery system stores excess and regenerative energy and 

provides additional power during acceleration and high-power 

demand situations[3]. FCell based vehicles are constructed 

from a main power source known as the Fcell system and an 

energy storage system that may take the form of a battery bank 

or a bank of supercapacitors (SC) both of which are 

responsible for supplying power to the load. When there is a 

demand for power from the load denoted by Pdemand(t), it may 

be partially met by the FCell, denoted by PFCELL(t), while the 

remainder of the power is met by the battery/ultracapacitor 

denoted by Pbat/supercapacitor(t).  

Pdemand(t) = PFcell(t)+Pbat/supercapacitor(t) for all t.                    (1)                                         

To gain a better understanding of the advantages and 

disadvantages of FCell based vehicles, it is essential to 

examine the functions of the energy management storage 

system in an FCell hybrid vehicle (FCell Hybrid) as listed 

below [4]: 

I. Providing traction power during FCell start-up: FCell output 

power may be lower than its rated value in cold ambient or 

cold-start conditions, hence traction power must be 

provided in these cases. The energy storage system should 

make up the difference while the FCell heats up and 

achieves its rated output. 

II. FCell output power may be lower than its rated value in 

cold ambient or cold-start conditions, hence traction power 

must be provided in these cases. The energy storage system 

should make up the difference while the FCell heats up and 

achieves its rated output. 

III. Recapturing energy from regenerative braking: In 

automobile applications, regenerative braking may recover 
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energy lost at friction brakes, improving hydrogen 

efficiency. Energy recovered ranges from 4.9 % in a 

highway cycle to 18% in an urban cycle. FCell Hybrid 

vehicle have constant loads from radiator fans, electric 

power steering, brakes, and air conditioning. The ESS may 

temporarily sustain electrical supplementary loads while 

the FCELL is turned off using recovered energy. 

IV. FCell Hybrid vehicle benefit from FCell start/stop:  An 

energy-management technique may shut down and restart 

the FCELL while the vehicle is running. 

1.1 Need of RL based Energy Management Strategy 

An EM strategy is responsible for the equitable sharing of 

power from multiple energy sources. These emerging 

technologies such as fuel cells and auxiliary energy source 

batteries offer the potential to create less carbon-intensive and 

more environmentally-friendly transportation scenarios. 

In the transportation sector, the development of efficient 

energy management strategies and powertrain architecture is 

critical for advancing the utilization of novel energy sources. 

An EMS is essential in reducing energy consumption and 

emissions for electrified powertrain technologies. Among the 

most common types of energy management systems are 

Model predictive control (MPCtrl), Dynamic programming 

(D_Prog), Rule-based techniques, Equivalent consumption 

energy management (ECMS). Creating a set of fixed norms 

for vehicle operation is required for rule-based EMS which is 

the simplest and least expensive option. D_Prog on the other 

hand provides globally optimized solutions but it is 

computationally intensive and requires predefined speed 

profiles which makes it inappropriate for real-time 

applications. By reducing optimized domain to cost function 

ECMS is an effective method that delivers real-time solutions. 

Despite the fact that ECMS has been studied exhaustively for 

electrified propulsion systems, its optimization is still far from 

the global optimum due to single time step optimization. 

MPCtrl offers multi-step optimization and real-time solutions 

but its results are model-dependent and based on a local 

optimum causing the use of reduced order models during 

analysis in an effort to cut down on processing costs which 

does a disservice to accuracy. 

Reinforcement learning provides an alternative to traditional 

control techniques for the development of efficient EM 

strategies for electrified powertrains. Similar to dynamic 

programming reinforcement learning utilizes the Bellman 

Equation to obtain a globally optimized solution. It operates 

by combining instantaneous rewards from the current state 

with cumulative rewards from the next stage to the episode's 

conclusion. The RL agent interacts directly with the 

environment to acquire state, reward, and action information 

in order to discover decision-making principles that maximize 

accumulated reward over time. RL algorithms are founded on 

Markov decision processes and presume that only the current 

state influences future states. RL-based algorithms provide 

more accurate optimization results than rule-based techniques 

while absorbing less computational time and cost and 

operating online unlike D_Prog techniques. In addition, RL is 

a model-free operation, eradicating the dependence of ECMS 

and MPCtrl on reduced order models. RL approximates 

globally optimal results and performs similarly to D_Prog 

which makes it a promising strategy for designing efficient 

and robust EMS for electrified powertrains. Sources [5-8] 

claim that fuel cell vehicles-locomotives with an energy 

storage system installed may improve fuel economy by 

recovering braking energy and lowering peak power 

requirements. Hybrid power systems that use fuel cells and 

batteries may help speed up reaction times. Research on fuel 

cell-based vehicle-train technology goes back to the early 

1990s [9]. The first pure fuel cell traction locomotive was built 

in 2002 [10], while the first fuel cell train with a recovered 

brake energy system was built in 2006 [11]. Fuel cell vehicles-

locomotives have lately been created in several nations like 

France and China [12]. 

Many researchers have proposed different energy management 

strategies such as the streamlining method [13], the force-the-

board technique [14], and others to optimize energy 

distribution. In 2021, China released the first domestically 

produced hybrid train powered by hydrogen fuel cells (China 

Daily, 2021). The locomotive's top speed is 80 kilometers per 

hour and its range is 500 kilometers and it is powered by a 

Fcell and a battery energy storage system.  These include least 

identical hydrogen consumption [15], fuzzy coherent energy 

[16], strong PI control [17], dynamic following coefficient, an 

algorithm based on forward dynamic programming [18], an 

optimization-based methodology [19], the pontryagin's 

minimum principle [20], metaheuristic optimisation 

techniques, fuzzy logic control, and speed trajectory 

optimisation [21]. However, most of these EMSs are made for 

low-powered road vehicles which means they might not work 

with massive, high-powered vehicles or rail vehicles whose 

power requirements vary over time. Some researchers have 

proposed fuzzy logic-based EMSs for fuel cell hybrid 

locomotives [22] but these methods may be too complex and 

costly for practical implementation. 

The Deep reinforcement learning (DRL) based EMS was 

compared with three other EMSs like rule-based EM startegy, 

model predictive control EM strategy, and a fuzzy logic EM 

strategy. The review show that the DRL-based EMS achieved 

the best performance in terms of hydrogen consumption, fuel 

cell aging, and battery SOC variation. The DRL-based EMS 

showed a hydrogen consumption reduction of up to 8.3% and 

a fuel cell aging reduction of up to 23%. The fuzzy logic EMS 

showed the worst performance with a hydrogen consumption 

reduction of only 2.9% and a fuel cell aging reduction of only 

5.9%. The DRL-based EMS was also able to maintain the 

battery SOC within a narrow range, which is important for the 

longevity of the battery. 

Organizing the paper: Section 2 Covers RL methods used in 

electric powertrains. Section 3 Discuss RL technique-based 
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EMS. Section 4 Challenges, opportunities, and potential 

solutions and Section 5 conclude the paper. 

2. RL TECHNIQUE 

One way to apply RL to FCell hybrid transportation vehicles 

is to use it to optimize the power split between the Fcell and 

the battery. The agent could take actions such as adjusting the 

power output of the Fcell and battery and the reward signal 

could be based on the energy efficiency of the vehicle as well 

as other factors such as passenger comfort and safety. Another 

potential use of RL in Fcell hybrid vehicles is to optimize the 

charging and discharging of the battery. It is possible that the 

agent will have to make decisions on when to recharge the 

battery when to take power from the battery and how much 

power to drain from the battery in order to do this. In such a 

scenario, the incentive signal would be decided upon based on 

the energy efficiency of the vehicle, state of the battery and a 

number of other criteria such as the level of comfort and 

security experienced by the passengers. The RL may be able 

to optimize the functioning of Fcell hybrid vehicles which 

would lead to increased energy efficiency and decreased 

operating costs. However, when RL is used in complex control 

systems like those used in train operations safety and 

reliability must be carefully considered. Before putting the 

RL-based control system into use in the actual world it is 

essential to conduct thorough evaluations and tests of its 

effectiveness first. A generalized diagram of RL approaches 

may be shown in Figure 1. 

 
Figure 1: Schematic Diagram of RL Method 

In the area of machine learning and AI, reinforcement learning 

algorithms have seen widespread usage in the development of 

control approaches that can attain a degree of control 

comparable to that of a person.  There are several different 

reinforcement learning techniques that can be used to optimize 

the operation of fuel cell hybrid transportation vehicles.  

1. Q-learning: This reinforcement learning method is simple 

and popular. It requires learning an action-value function that 

links state action pairings to predicted rewards. Next, the agent 

can maximise the action-value function. In the context of fuel 

cell hybrid vehicles, Q learning could be used to optimize the 

power split between the Fcell and battery or to optimize the 

charging and discharging of the battery[23]. 

 
Figure 2: Q learning mechanism 

2. Deep reinforcement learning: Deep neural networks 

approach the action-value function. Real-world control 

issues generally have high-dimensional state and action 

spaces making this technique valuable. Deep reinforcement 

learning has optimized wind farms and other renewable 

energy sources and might optimize fuel cell hybrid 

vehicles[24]. 

3. Actor-critic methods: Actor-critic methods involve 

learning both a policy (i.e. a mapping from states to 

actions) and an action-value function. The policy is 

optimized using the action-value function as a critic. 

Actor-critic methods can be more sample efficient than Q-

learning and are often used in continuous control problems 

such as robotic manipulation. In the context of Fcell hybrid 

vehicles-trains actor-critic methods could be used to learn a 

policy for the power split between the Fcell and battery or 

for the charging and discharging of the battery[25]. 

4. Model-dependent reinforcement learning: Model-

dependent reinforcement learning involves learning a 

model of the environment (e.g. a dynamical system model) 

in addition to learning a policy or action-value function. 

This can be useful when the environment is complex or 

uncertain. Model-dependent reinforcement learning has 

been used to optimize the operation of HVAC systems and 

other building automation systems, and could potentially 

be applied to fuel cell hybrid vehicles-trains as well [26]. 

These are only a few reinforcement learning methods that 

potentially optimize fuel cell hybrid vehicles-train functioning. 

The issue, environment, and control system will determine the 

method.  

2.1 Rl Algorithms  for various transportation vehicles: 

I. Reinforcement learning for HEVs  

RL based EMS for Hybrid Electric Vehicles (HEVs) involves 

the use of RL algorithms to optimize the EM of hybrid electric 

vehicles. RL agents learn optimal control policies based on the 

vehicle's operating conditions and driver behavior. The main 

advantages of RL-based EMS for HEVs include improved fuel 

economy, reduced emissions, and increased drivability. 

However, challenges include data quality and quantity, system 

complexity, safety and reliability, and explainability. Potential 

solutions include data preprocessing, hierarchical RL, safe RL, 
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and explainable RL. Various RL algorithms have been 

compared in terms of their performance for HEV energy 

management with DDPG and PPO being popular choices[27-

28]. 

II. Reinforcement learning for PHEVs 

Reinforcement learning has been used in the development of 

EM systems for plug-in hybrid electric vehicles (PHEVs). The 

RL algorithm learns an optimal control policy that can 

dynamically allocate power between the engine, battery, and 

other components to achieve optimal performance while 

meeting various constraints such as battery SOC, engine 

efficiency, and emissions. The RL-based EMS for PHEVs has 

been shown to improve fuel efficiency and reduce emissions 

compared to traditional rule-based approaches. The RL 

algorithm takes into account various factors such as the 

vehicle's speed, the battery SOC, and the distance to the next 

charging station to make decisions on power allocation. RL-

based EMS can also adapt to changes in driving patterns and 

environmental conditions to optimize performance in real-

time. However, the use of RL in PHEVs EMS faces 

challenges such as data quality and quantity, system 

complexity, and safety and reliability concerns. To overcome 

these challenges, techniques such as data preprocessing, 

hierarchical RL, and safe RL can be employed. The quality of 

the data that the RL agent uses may be improved via the use of 

data preparation by cleaning and filtering any noisy input. 

Hierarchical RL has the ability to partition a problem into 

many more manageable subproblems, which makes for more 

effective learning. It is possible for safe RL to guarantee that 

the RL agent acts within safe bounds and steers clear of 

dangerous activities [29-31]. 

III. Reinforcement learning for HETVs 

The use of RL algorithms to optimize the EM of hybrid 

electric track vehicles is at the center of the reinforcement 

learning-based EM system for hybrid electric tracked vehicles 

(HETVs). Taking into consideration the dynamics and the 

restrictions of the system, RL algorithms are able to learn the 

best control rules for the HETV system. The complexity of the 

HETV system, which includes various energy sources and 

different power flow channels, is one of the issues faced by 

RL-based EMS for high-efficiency all-terrain vehicles. 

Internal combustion engines and electric motors are two 

examples of these types of energy sources. In order to 

overcome this complexity, RL algorithms like as DDPG and 

PPO, which learn the best control policies at several levels of 

abstraction, may be used. Another obstacle is the scarcity of 

training data derived from the actual world for RL algorithms. 

Researchers have been making use of simulation environments 

to test RL algorithms and create training data in order to 

overcome this difficulty. It is possible that RL-based EMS for 

HETVs will increase fuel economy, lower emissions, and 

enhance the overall performance of the HETV system. In the 

future, research might concentrate on building more 

sophisticated RL algorithms and include more complicated 

dynamics and restrictions in RL models [32-33]. 

IV. Reinforcement learning based EMS for BEVs 

The complexity of the system, the availability and quality of 

data, the safety and dependability of the system, the scalability 

of the method, and the possibility for creative solutions are 

some of the most important aspects of RL-based EMS for 

battery electric vehicles (BEVs). It is also important to 

consider the specific challenges and opportunities that arise in 

the context of BEVs, such as the need for efficient charging 

and energy management to optimize range and battery life. 

Technical factors to consider include the choice of RL 

algorithm, the design of the reward function, and the use of 

techniques such as hierarchical RL and safe RL to improve 

performance and ensure safety [34-36]. 

V. Reinforcement learning based EMS for FCELLVs 

Reinforcement learning based EM Systems for Fuel Cell 

Vehicles (FCELLVs) have gained significant attention in 

recent years. FCELLVs have a unique characteristic where the 

efficiency of the Fcell stack and other components can be 

optimized for better energy management. RL-based EMS can 

take advantage of this feature and learn optimal control 

policies to enhance the vehicle's energy efficiency. One of the 

key factors for RL-based EMS in FCELLVs is the selection of 

appropriate state and action spaces. The state space should 

capture all relevant information related to the vehicle's energy 

consumption and the environment, such as battery state of 

charge, vehicle speed, and road gradient. Similarly, the action 

space should provide enough flexibility for the controller to 

adjust the power output of different components to meet the 

desired power demand while minimizing energy loss. Another 

critical aspect is the choice of the RL algorithm. Different 

algorithms, such as Q-learning, SARSA, and actor-critic, have 

been used for RL-based EMS in FCELLVs. The algorithm 

should be able to learn optimal control policies in a 

computationally efficient manner considering the complexity 

of the FCELLV model. Lastly, the performance evaluation of 

the RL-based EMS is crucial to ensure that it provides better 

energy efficiency than traditional rule-based controllers. 

Simulation and real-world testing can be used to evaluate the 

RL-based EMS's performance considering various driving 

scenarios and environmental conditions. Overall, RL-based 

EMS has the potential to significantly enhance FCELLV 

energy efficiency and reduce its environmental impact [37-

38]. 

3. RL TECHNIQUES  BASED EMS 

Reinforcement Learning was used to create an intelligent EMS 

for a FCell/battery EV [37]. The scientists employed a novel 

European drive cycle to simulate propulsion load and found 

that the algorithm enhances battery lifespan and power 

delivery system efficiency. [40] created another FCELLV RL-

based dynamic EMS. This method maintained battery SOC 

stability while reducing hydrogen consumption better than 

fuzzy logic-based methods. FCELLVs have RL-based long-

term EMS [41]. This research extended the vehicle's two 

power sources. The simulation results were compared to rule-

based techniques and showed that the suggested approach 
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minimized Fcell and Li-ion battery attenuation and satisfied 

vehicle power demand. FCELLVs with three power sources—

Fcell, battery and ultracapacitor use RL [42]. Hierarchical RL 

approximation global optimization was used to create an 

intelligent EMS [43]. Simulations showed that the suggested 

technique can self-learn to adapt to driving style changes. The 

suggested technique lowered hydrogen usage by 5.8% and 

Fcell start-stop times by 19.3%. As indicators of status, use the 

arrival time, the waiting time, the driving time, and the driving 

distance in [44] in order for deep reinforcement learning to 

design an ideal route and make pricing advice. 

DRL has been used in various transportation applications, 

such as intelligent transportation systems, autonomous 

vehicles, traffic management, and energy management. In 

intelligent transportation systems, DRL has been applied for 

route planning, traffic signal control, and public transit 

scheduling. In autonomous vehicles, DRL has been used for 

decision-making, perception and control. In traffic 

management DRL has been applied for congestion control, 

incident detection, and emergency response. In energy 

management DRL has been used for fuel consumption 

optimization, battery management and powertrain control. In 

recent years, DRL has demonstrated impressive performance 

in beating games like Atari and Go and it has also been 

utilized in various applications such as robotics, lane-keeping 

assistance, automated braking, and driverless cars [45-46]. For 

instance, reference [45] presents a DRL-based EMS for a 

FCell hybrid electric cars. This EM strategy makes use of a 

DNN in order to approximate the most effective EMS 

strategy. The results indicate that the DRL based EM strategy 

performs noticeably better than the traditional rule-based 

technique in terms of both the amount of fuel efficiency and 

the amount of energy that is used. Similar to this [47] propose 

DRL-based EMS for many different kinds of Fcell-based 

hybrid electric cars. According to the findings of the 

simulations the DRL-based EMS that was developed achieves 

a higher level of performance than the rule-based approach 

and the other heuristic algorithms. DRL algorithms such as 

DQN and DDPG have been extensively employed to learn the 

appropriate EMS policy for a variety of driving situations and 

circumstances. In general, the study suggests that DRL-based 

EMS may improve the vehicle's efficiency in both its use of 

fuel and energy to a significant degree. Deep reinforcement 

learning often known as DRL is an advanced kind of 

reinforcement learning that makes use of deep neural networks 

in order to train a policy that maximizes a reward function. 

The use of DRL as a method for tackling difficult control 

issues and managing vast state spaces is becoming more 

common.  Model-based and model-free DRL algorithms are 

the two distinct classifications that are possible to find. Model-

based algorithms are those that need a model of the 

environment in order to function while model-free algorithms 

are those that directly learn from the state-action transitions. 

Deep Q-Networks (DQN), Double Deep Q-Networks 

(DDQN), Policy Gradient (PG), Actor-Critic (AC), and Deep 

Deterministic Policy Gradient (DDPG) are some of the 

prominent DRL algorithms that are employed in transportation 

research. 

4. CHALLENGES, OPPORTUNITIES, AND 

POTENTIAL SOLUTIONS 

I. Challenges  

One of the main challenges in RL-based EM strategy for 

Fcell-based transportation vehicles is the complex dynamics of 

the fuel cell system. Fuel cells have highly nonlinear and time-

varying behavior which makes it difficult to model accurately. 

This can lead to inaccurate or unstable control decisions made 

by the RL agent which can negatively impact the performance 

and safety of the system. Another challenge is the limited 

availability of data for training the RL agent. Fuel cell systems 

are relatively new and data on their performance and behavior 

is limited. Additionally, data from fuel cell systems may be 

noisy, incomplete, or biased which can affect the performance 

of the RL agent.  

II. Opportunities 

Using RL based EM strategy for fuel cell-powered 

transportation vehicles has the potential to boost system 

performance and efficiency in a variety of ways. One of the 

most promising prospects is the chance to improve the 

efficiency and reduce the operational expenses of the fuel cell 

system in real time. For instance, the RL agent may figure out 

how to adjust the fuel cell stack's power output such that it 

satisfies the vehicle's needs. This would save fuel 

consumption by preventing unnecessary energy loss. Another 

opportunity afforded by RL-based EMS is the ability of 

learning from experience and adapting to new conditions. 

Dynamic factors such as environmental conditions, load 

requirements, and other factors may all affect the efficiency of 

a Fcell system. The system's performance and reliability might 

be enhanced by RL-based EMS's capacity to learn from these 

changes and adjust the control strategy accordingly. 

III. Potential Solutions 

There are a diversity of approaches that may be taken to deal 

with the difficulties of RL-based EMS for fuel cell-based 

transportation vehicles and to take use of the possibilities that 

arise from their use. 

Possible solutions include the use of more complex modelling 

and control techniques like MPCtrl and adaptive control. 

These methods may improve the RL agent's control precision 

and consistency by taking into consideration the complex and 

nonlinear dynamics of the fuel cell system. Data pretreatment 

methods including signal processing, data cleansing, and 

outlier identification are another option. By minimizing the 

effects of noise, missing data, and biases these methods may 

improve the quality of the data used to train the RL agent. 

Additionally, transfer learning strategies can be experimented 

with. To boost the RL agent's learning efficiency and 

performance, one might use transfer learning, which is moving 

information from one domain to another. The quantity of data 
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needed to train the RL agent may be decreased by applying 

what was learned about one fuel cell system to another 

comparable system. 

Table 1: Summary of challenges and solutions 

Challenges Potential Solutions 

Complex and 

nonlinear 

dynamics of 

fuel cell system 

 

Use of more complex modelling and control 

techniques like MPCtrl and adaptive control to 

improve control precision and consistency. 

Integration with physical models to improve the 

accuracy of predictions and control decisions. 

Limited 

availability of 

data for training 

the RL agent 

Data pretreatment methods including signal 

processing, data cleansing, and outlier 

identification to improve the quality of the data 

used to train the RL agent. 

Noisy, 

incomplete, or 

biased data 

Data pretreatment methods to minimize the effects 

of noise, missing data, and biases. 

 

Difficulty 

adapting to new 

conditions 

 

 

 

 

 

Use of transfer learning to improve the RL agent 

learning efficiency and performance by applying 

what was learned about one fuel cell system to 

another comparable system. Ensemble learning to 

improve overall performance by combining 

multiple RL agents; Human-in-the-loop to 

incorporate human input and address safety 

concerns. 

5. CONCLUSION 

The development of powertrains that are both environmentally 

friendly and efficient in terms of energy consumption is 

strongly reliant on the technology of electrified powertrains 

and energy management systems.  fuel cell-based hybrid 

electric vehicles have the potential to significantly reduce 

environmental pollution caused by transportation. The quick 

and dynamic responses required by Fcell-based vehicles 

during acceleration and braking can be addressed by 

implementing a hybrid electric system that utilizes fuel cell 

stacks and batteries. The use of an EM strategy based on 

reinforcement learning can optimize the distribution of power 

between multiple energy sources in order to maximize battery 

longevity and reduce fuel consumption. The potential benefits 

of FCell technology for the transportation industry include 

reduced operational costs and improved performance. this 

review paper highlights the challenges, opportunities, and 

potential solutions for using reinforcement learning-based EM 

systems in fuel cell-based transportation vehicles. RL-based 

EMSs have a number of benefits over rule-based approaches, 

as well as D_Prog, ECMS, and MPCtrl in terms of the amount 

of computing time required, the complexity of the models, and 

the optimality of the results. Despite the complex dynamics 

and limited availability of data RL-based EMS offers 

significant potential for improving the performance and 

efficiency of fuel cell systems through real-time optimization 

and adaptive learning. Advanced modeling and control 

techniques, data preprocessing, and transfer learning are some 

of the potential solutions that can address the challenges and 

take advantage of the opportunities presented by RL-based 

EMS for fuel cell-based transportation vehicles. With further 

research and development RL-based EMS can play a 

significant role in reducing the environmental impact and 

improving the overall performance of transportation systems. 
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